UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
	<u> </u>		GCE AS/A LEVEL – May/June 2011	9702	22	
1	` '		as only magnitude as magnitude and direction		B1 B1	[2]
	(b) kin	etic er	nergy, mass, power all three underlined		B1	[1]
	(c) (i)	15 = T =	$ut + \frac{1}{2}at^2$ $0.5 \times 9.81 \times t^2$ 1.7 s		C1 A1	[2]
		if $g = 10$ is used then -1 but only once on paper				
	(ii)	$v_v^2 = v_v = resu$	cal component v_v : $v^2 + 2as = 0 + 2 \times 9.81 \times 15$ or $v_v = u + at = 9.81 \times 1.7$ 17.16 Itant velocity: $v^2 = (17.16)^2 + (20)^2$ 26 ms ¹	7(5)	C1 C1 A1	[3]
		Allov	= 20 is used instead of u = 0 then 0/3 w the solution using: al (potential energy + kinetic energy) = final kinetic energy	rgy		
	(iii)	displ	ance is the actual path travelled lacement is the straight line distance between start ald direction) / minimum distance	nd finish points (B1 in B1	[2]
2	(a) (i)	force	e units of <i>D</i> : e: kg m s ² us: m velocity: m s ¹		B1 B1	
			e units of <i>D</i> : $[F/(R \times v)] \text{ kgms}^2/(m \times ms^1)$ m ¹ s ¹		M1 A0	[3]
	(ii)	1.	$F = 6\pi \times D \times R \times v = [6\pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7$ = 6.9 × 10 ⁻⁵ N	7]	A1	[1]
			mg - F = ma hence $a = g - [F / m]m = \rho \times V = \rho \times 4/3 \pi R^3 = (1.4 \times 10^{-5})a = 9.81 - [6.9 \times 10^{-5}] / \rho \times 4/3 \pi \times (1.5 \times 10^{-3})^3a = 4.9(3) \text{ m s}^{-2}$	(9.81 – 4.88)	C1 M1 A1	[3]
	(b) (i)	a de	g at time t = 0 creases (as time increases) es to zero		B1 B1 B1	[3]
	(ii)		ect shape below original line ch goes to terminal velocity earlier		M1 A1	[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9702	22
•		•	•

3	(a)	(i)	work done equal the force	s force × distance moved / displacement in the direction of	B1	[1]
		(ii)	power is the rate	of doing work / work done per unit time	B1	[1]
	(b)	(i)	kinetic energy	= $\frac{1}{2} mv^2$ = 0.5 × 600 (9.5) ² = 27075 (J) = 27 kJ	C1 C1 A1	[3]
		(ii)	potential energy	= mgh = $600 \times 9.81 \times 4.1$ = 24132 (J) = 24 kJ	M1 A1 A0	[2]
		(iii)	work done = 27 -	- 24 = 3.0 kJ	A1	[1]
	((iv)		3000 / 8.2 (distance along slope = 4.1 / sin 30°) 366 N	C1 A1	[2]
4	(a)	atta	ched	rire over pulley or vertical wire attached to ceiling with mass	B1 B1	[2]
	(b)	mea sca mea goo mea orig	asure diameter wi asure initial and fi le asure / record mas d physics method asure diameter in	th of wire to reference mark with metre ruler / tape th micrometer / digital calipers nal reading (for extension) with metre ruler or other suitable ss or weight used for the extension : n several places / remove load and check wire returns to several readings with different loads	(B1) (B1) (B1) (B1) (B1)	[4]
	(c)	plot dete calc	a graph of force α ermine gradient of culate area from π	graph for <i>F / e</i>	(B1) (B1) (B1) (B1) (B1)	
		MA	X of 4 points		B4	[4]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9702	22

- (a) (i) energy converted from chemical to electrical when charge flows through cell or round complete circuit
 - (ii) (resistance of the cell) causing loss of voltage or energy loss in cell B1 [2]
 - (b) (i) $E_B E_A = I (R + r_B + r_A)$ 12 - 3 = I (3.3 + 0.1 + 0.2) C1 I = 2.5 A A1 [2]
 - (ii) Power = $E \times I$ = 12 × 2.5 C1 = 30 W A1 [2]
 - (iii) $P = I^2 \times R$ or $P = V^2 / R$ or P = VI= $(2.5)^2 \times 3$ = $9^2 / 3.6$ = 9×2.5 C1 = 22.5 Js^{-1} A1 [2]
 - (c) power supplied from cell B is greater than energy lost per second in circuit B1 [1]
- 6 (a) (i) to produce coherent sources or constant phase difference B1 [1]
 - (ii) 1. $360^{\circ} / 2\pi$ rad allow n × 360° or n × 2π (unit missing –1) B1 [1] 2. $180^{\circ} / \pi$ rad allow (n × 360°) 180° or (n × 2π) π B1 [1]
 - (iii) 1. waves overlap / meet (resultant) displacement is sum of displacements of each wave B1 [2]
 2. at P crest on trough (OWTTE) B1 [1]
 - (b) $\lambda = ax/D$ C1 = 2 × 2.3 × 10 ³ × 0.25 × 10 ³ / 1.8 C1 = 639 nm A1 [3]